Introduction •0000 •000			
Introduction			

Noncontact Determination of Fluid Properties by Means of Focused Acoustics Senior Honors Thesis Presentation

Zachary Capalbo

Gordon College Department of Physics

May 7, 2012

Introduction ○●○○○ ○○○○			
Introduction			

Outline I

Introduction

- Introduction
- History and Other Methods
- 2 Experiment and Setup
 - Overview
 - Procedure
 - What's going on

- Theory
- Overview
- Acoustics
- Fluid Dynamics

Results

Preliminary Analyses

Introduction 0●000 0000			
Introduction			

Outline II

Results

5 Future Work

- Work
- Curiosities

6 Acknowledgments

Introduction ○O●○○ ○○○○			
Introduction			

Basic Overview

An ultrasonic transducer is used to create a small mound on the surface of a liquid. The same transducer is then used to measure the height of the mound as it rises and falls. By looking at the time it takes the mound to rise and fall, and the maximum height, we can tell something about the surface tension and viscosity.

Introduction 00000 0000			
Introduction			

Impetus

- Playing with Acoustic Drop Ejection
- Wondered if there was a way to detect surface tension and viscosity
- Noticed that mound forms when out of focus or not enough energy to eject

Introduction ○○○○● ○○○○			
Introduction			

- Physics Determine fluid properties even with small or volatile fluids
- Chemistry Monitor chemical reactions by determining viscosity or surface tensions
- Biology Monitor biological reactions without contaminating samples

Introduction ○○○○○ ●○○○				
History and Othe	r Methods			

Viscometry

Capillary Viscometer¹¹

Ultrasonic Doppler Viscometer⁵

Introduction ○○○○○ ○●○○				
History and Oth	vr Mathada			

Surface Tension Techniques

Contact Angle Surface Tension Measurement¹⁰

Wilhelmy Plate Method⁸

Introduction ○○○○○ ○○●○				
History and Othe	er Methods			

Laser Imaging of Mound Relaxation

- Method devoloped at Stanford University¹
- Uses focused acoustics to form mound
- Uses laser to measure height of mound as it relaxes

Introduction				
00000				
0000				
History and Othe	r Methods			

Novelty & Advantages

- Use same transducer for both mound formation and height measurements
- No lasers, needles, etc.
- For certain container materials, fluid does not need to be removed from container
- Very small amounts of fluid and containers can be used

	Experiment and Setup			

Experiment and Setup

	Experiment and Setup • O • O • O • O • O • O • O • O			
Overview				

Schematic

Data for Analysis

Experiment and Setup O● ○○○○○○○○ ○○○○○○○○○○			

Actual Setup

Noncontact Determination of Fluid Properties by Means of Focused Acoustics

	Experiment and Setup 00 0000000 00000000			
Procedure				

Procedure

	Experiment and Setup 00 0000000 0000000000			

Procedure

Prepare the Sample

- Clean out bottle cap
- Fill with 5 mL of solution (Concentrations vary from 0% to 100%)
- Fill bubbler to top
- Place bottle cap on bubbler

	Experiment and Setup 00 0000000 0000000000000000000000000			
Procedure				

Focus the transducer

- Lower transducer
- Fill bubbler with water
- I Place cap on bubbler
- Repeatedly Send echo signal
- Raise transducer until echo return signal reaches maximum

	Experiment and Setup 00 0000000 000000000			
Procedure				

- Form mound
- Oblay for a time
- Send echo pulse
- Record time taken to receive echo pulse
- Increase delay duration
- Repeat
 - Repeated 90-150 times depending on resolution desired
 - Delay times spaced logarithmically from 0.0001 to .3 seconds

Experiment and Setup			
00 0000000 0000000000			

Procedure

Main Loop - Mound Formation

- Focused acoustic beam emitted at surface of liquid
- Surface absorbs absorbs some energy and starts to rise

	Experiment and Setup 00 00000000 000000000			
Procedure				

Main Loop - Delay & Echo

- Time of flight of echo signal determined
- Waiting for a delay allows time resolution
- Changing the delay will measure the height at different times after the mound formation begins

	Experiment and Setup 00 00000000 000000000			
Procoduro				

Main Loop - Record Data

- Echo Pulse recorded to computer
- Afterwards, computer extracts time of flight and other information

	Experiment and Setup 00 0000000 00000000			
Procedure				

- Push a button and get coffee
- Rinse and Repeat

	Experiment and Setup 00 00000000 •0000000000			
What's going on				

Behind the scenes

Noncontact Determination of Fluid Properties by Means of Focused Acoustics

	Experiment and Setup ○○ ○○○○○○○○ ○●○○○○○○○○			
What's going or	1			

Signal Generation

- Mound creation pulse —
 60 500 μs duration, 2.5
 7 MHz toneburst
- Variable delay 0.01 -300 millisecond duration, changed at each iteration to allow time resolution
- Echo Signal Single sine wave pulse

	Experiment and Setup 00 00000000 0000000000			
What's going on				

Amplification

- Signal amplified to 98 V_{pp}
- Rail to rail switch pulser circuit

	Experiment and Setup 00 0000000 000000000			
What's going on				

Transducer

- Either High Resolution or High Sensitivity
- Converts electrical pulses to acoustic pulses
- Receives acoustic pulses and converts them to electrical pulses

	Experiment and Setup 00 0000000 0000000000			
What's going on				

Bubbler

- Contains Coupling fluid
- Provides level base for fluid container
- Maintains constant contact between transducer and fluid container
- Double O-rings provide stability and sliding seal

Experiment and Setup 00 00000000 0000000000			

What's going on

Fluid Container

HDPE Bottle Cap

- Small and maneuverable
- Flat, firm surface
- Chemically Resistant
- Acoustic Impedance Mismatch with water

Polystyrene Petri Dish

- Good acoustic power transfer with water
- Dissolved by many different chemicals
- Bottom tends to bow or flex

No Container

- Fluid directly on top of transducer in bubbler
- Conceptually simpler
- Fluid settle time into crevices
- No reflections

	Experiment and Setup 00 0000000 0000000000			
What's going on				

Fluid

- Concentrations of propylene glycol mixed with water
- Watch for things in surface
- Watch for shear waves etc

	Experiment and Setup			
What's going on				

Strobe light

- Variable delay from mound formation
- Variable duration

	n Experiment and Setup ○○ ○○○○○○○○ ○○○○○○○○ ○○○○○○○○○○○○			
What's goin	lơ on			

Oscilloscope Display

- Triggered to emission of echo signal
- Time of pulse on oscilloscope indicates time of flight

	Experiment and Setup ○○ ○○○○○○○○ ○○○○○○○○○			
What's going c	n			

Control Software

- Generate signals
- Increments variable delay timestep and loops through experiment
- Acquires data from oscilloscope

	Experiment and Setup			
What's going on				

- Calculate time of flight from echo pulse
- Plot time of flight vs. Echo delay time
- Calculate mound height from time of flight
- Account for different starting fluid heights and evaporation.

	Theory 00 0000000 0000000		

Theory

Noncontact Determination of Fluid Properties by Means of Focused Acoustics

	Theory ●0 ○○○○○○○		
Overview			

- Energy Transfer (Electrical \rightarrow Acoustic \rightarrow Kinetic/Surface)
- Reflection and Transmission

	Theory 0● 0000000 0000000		

Overview

Propylene Glycol

Noncontact Determination of Fluid Properties by Means of Focused Acoustics

	Theory ○○ ●○○○○○○		
Acoustics			

Acoustics

Noncontact Determination of Fluid Properties by Means of Focused Acoustics
	Theory ○○ ○○○○○○○○		
Acoustics			

Input Power

Average Power for Repeated Sinusoidal burst

$$\frac{t}{T}\frac{V_0^2}{2R}$$

- \bullet t duration of sinusoidal burst
- **T** period of total pulse
- V₀ Peak to peak voltage across transducer
- R Electrical Impedance of Transducer

	Theory ○○ ○○●○○○○○		
A			

Reflection at an interface

$$\frac{I_t}{I_i} = \left(\frac{Z_1 - Z_2}{Z_1 + Z_2}\right)^2$$

- $\bullet~I_t$ Transmitted intensity
- I_i Incident intensity
- **Z**₁ Acoustic Impedance of source
- **Z**₂ Acoustic Impedance of destination

	Theory ○○ ○○○●○○○ ○○○○○○○		

Acoustics

Piezo Electric Transducer

- Piezo crystal converts electrical impulses into mechanical vibrations
- and vice versa
- Backing provides damping for vibration
- Coupled to quartz rod

(Source NDT International, Inc.⁷)

	Theory		
	00 0000000 0000000		

Acoustics

Piezo Electric Transducer - Focus

- Surface ground into partial sphere
- Focuses acoustic waves at focal point

	Theory		
	00 0000000 0000000		

Acoustics

Piezo Electric Transducers - Resolution Vs. Sensitivity

High Resolution — High Damping

High Sensitivity — High Gain

Noncontact Determination of Fluid Properties by Means of Focused Acoustics

Gordon College Department of Physics

	Theory ○○ ○○○○○○● ○○○○○○○		
A			

Ultrasonic Distance Measurement

Measurement for longitudinal waves:

$$h = \frac{\Delta t}{2}c$$

- h Height of sound in medium
- c Speed of sound in medium
- Δt Time of flight of echo pulse

	Theory ○○ ●○○○○○○ ●○○○○○○		
Fluid Dynamics			

Fluid Dynamics

	Theory ○○ ○○○○○○○ ○●○○○○○○		
Fluid Dynamics			

Viscosity

Tangential Stress Per Unit Meter

$$I_z = I_0 e^{-\alpha z}$$
$$\alpha \approx \frac{2}{3} \frac{\eta}{\rho} \frac{\omega^2}{c^2}$$

(Source Heuter and Bolt³)

- I_z Axial acoustic intensity at z
- **I**₀ Incident acoustic intensity
- η Shear viscosity
- ρ Density of fluid
- $\bullet \ \omega$ Wave frequency

	Theory ○○ ○○○○○○○ ○○●○○○○○		
Fluid Dynamics			

Surface Tension

$$\sigma = \frac{W}{\Delta A}$$
$$E = \sigma A$$

Acts as a restoring force
A ≈ size of focal spot

- W Work necessary for increased surface area
- ΔA Increase in surface area
- E Energy needed to create surface area A

	Theory ○○ ○○○○○○○ ○○○○○○○		
Fluid Dynamics			

Mound Formation

$$p_i = AP_LT = \frac{2AI_0}{c} = \frac{2E}{c}$$

(Source Elrod et al.²)

- **p**_i Initial mound momentum
- A Area of mound
- **P**_L Langevin Radiation Pressure
- I₀ Acoustic Intensity
- E Energy Density
- **c** Speed of sound in medium

	Theory ○○ ○○○○○○○ ○○○○○○○○		
Fluid Dynamics			

Rise Time

$$t_r = 0.116 \frac{2\lambda^{3/2} F^{3/2} \rho^{1/2}}{\sigma^{1/2}}$$

Or, solving for σ

$$\sigma = 0.0538 \frac{\lambda^3 F^3 \rho}{t_r^2}$$

For water the current experimental setup, t_r is predicted to be $\approx 3900 \mu s$. (Source Cinbis et al.¹)

- **t**_r Time for mound to reach maximum height
- λ Wavelength in fluid
- **F** F number of transducer $\left(\frac{FocalLength}{Diameter}\right)$
- ρ Density of fluid
- σ Surface tension of fluid

	Theory ○○ ○○○○○○○ ○○○○○●○		
Fluid Dynamics			

- Pressure from acoustic waves initially propels mound upward and outward
- Surface tension and gravity bring mound back to flat surface

	Theory ○○ ○○○○○○○ ○○○○○○●		
Fluid Dynamics			

Maximum Height

$$h_r = 0.21 \frac{E^2 f^4}{c^6 \sigma \rho}$$

(Source Elrod et al.²)

- h_r Maximum height of mound
- **f** Frequency of acoustic toneburst
- E Incident energy of acoustic toneburst
- ρ Density of fluid
- σ Surface tension of fluid

	Results		

Results & Analysis

Noncontact Determination of Fluid Properties by Means of Focused Acoustics

Gordon College Department of Physics

	Results ●00 ○000		

Echo Pulse Shape Analysis

- a) Reflection from fluid container
- b) Reflection from fluid surface
- c) Second reflection from surface

	Results 0●0 0000		

	Results 0●0 0000		

	Results 0●0 0000		

	Results 0●0 0000		

	Results 0●0 0000		

	Results 0●0 0000		

	Results 0●0 0000		

	Results 0●0 0000		

	Results 0●0 0000		

		Results 00● 0000		
Preliminary Ana	alvses			

Relaxation Curve

Mound Relaxation Curve for Pure Water

		Results ○○○ ●○○○		
Paculto				

Non Container

Log Scale mound relaxation for Solutions Directly in Bubbler

	Results ○○○ ○●○○		

Results

High Sensitivity Results

Log Scale Mound Relaxation for High Sensitivity Transducer in HDPE Milk Cap (2170 data points)

Noncontact Determination of Fluid Properties by Means of Focused Acoustics

Gordon College Department of Physics

	Results		
	000 0000		

Results

High Resolution Results

Log Scale Mound Relaxation for High Resolution Transducer in HDPE Milk Cap (3260 data points)

$$\sigma \approx 140 \frac{\rm mN}{\rm m}$$
 (Expected $75 \frac{\rm mN}{\rm m})$

Noncontact Determination of Fluid Properties by Means of Focused Acoustics

	Results		
	000 0000		

Results

High Resolution Results II

Log Scale Mound Relaxation for High Resolution Transducer in HDPE Milk Cap (2374 data points)

Noncontact Determination of Fluid Properties by Means of Focused Acoustics

Gordon College Department of Physics

		Future Work	

Future Work & Curiosities

Noncontact Determination of Fluid Properties by Means of Focused Acoustics

Gordon College Department of Physics

		Future Work ●00 00	
Work			

- Faster Data acquisition
- Tighten precision on perpendicularity/levelness
- Better precision on mixing
- Better precision on transducer height
- Motorized transducer height
- Automatic Pipetting machine or bottle cap switcher

		Future Work 0●0 ○○		
Work				

- Work out relation between emitted electrical energy, reflected and transmitted acoustic energy, HDPE container, and viscosity
- Determine relation between mound relaxtion rate and surface tension

I heory

		Future Work 00● 00	
Work			

- Check fluids with lower viscosities and lower surface tensions
- Check fluids with higher viscosities and higher surface tensions
- Run experiments at different power levels and frequencies

		Future Work ○○○ ●○	

Curiosities

Inverted Relaxation Curve

- Fluid seems to rise rather than fall
- May be due to standing vibrations
- May be due to alignment issues

		Future Work ○○○ ○●	

Curiosities

Pulse Shape Shifting

Noncontact Determination of Fluid Properties by Means of Focused Acoustics

Gordon College Department of Physics

		References	

References I

- C. Cinbis, N. N. Mansour, and T. Khuri-Yakub B. Effect of surface tension on the acoustic radiation pressure-induced motion of the water-air interface. *Journal of the Acoustical Society of America*, 94(4), 1993.
- [2] S. A. Elrod, B. Hadimioglu. B. T. Khuri-Yakub, E. G. Rawson, E. Richley, C. F. Quate, N. N. Mansour, and T. S. Lundgren. Nozzleiess droplet formation with focused acoustic beams. *Journal of Applied Physics*, 65(9), 5 1989.
- [3] Theodor F. Heuter and Richard H. Bolt. Sonics. Acoustical Society of America, 2000.
| | | References | |
|--|--|------------|--|
| | | | |

References II

- [4] Sau-fong Hon. Study of self-focused piezoelectric transducer for liquid ejection. Master's thesis, The Hong Kong Polytechnic University, http://hdl.handle.net/10397/2654, August 2009.
- [5] Völkan Koseli, Serife Zeybek, and Yusuf Uludag. Online viscosity measurement of complex solutions using ultrasound doppler velocimetry. *Turkish Journal of Chemistry*, pages 297–305, 2006.
- [6] Dow Chemical Company. Guide to Glycols. http://www.dow.com/PublishedLiterature/dh_0047/ 0901b803800479d9.pdf?filepath=propyleneglycol/pdfs/noreg/117-01682.pdf&fromPage=GetDoc, 2003.

		References	

References III

- [7] NDT International, Inc. Basic Ultrasonic Principles. http://www.ndtint.com/Basic%20UT%20Principles.PDF, 2010. URL WestChester, PA.
- [8] E. Rame. The interpretation of dynamic contact angles measured by the wilhelmy plate method. *Journal of Colloidal* and Interface Science, 185:245-251, 9 1996.
- [9] Robert H. Randall. *An Introduction to Acoustics*. Dover, Mineola, New York, 1951.
- [10] Jesse Thompson. Contact angle research project. Summer 2010 Research Internship, 2010.
- [11] Jürgen Wilke, Holger Kryk, Jutta Hartmann, and Dieter Wagner. Theory and Praxis of Capillary Viscometry, 2000. SCHOTT.

		References	

References IV

- [12] Xu Zhu. Micromachined self-focusing acoustic wave transducers. Master's thesis, University of Hawaii, August 1997.
- [13] Xu Zhu, Eddie Tran, Weichih Wang, Eun Sok Kim, and Soo Young Lee. Micromachined acoustic-wave liquid ejector. *Digest of Solid-State Sensor and Actuator Workshop*, pages 280–282., 1996.

			Acknowledgments

Acknowledgments

- Dr. David Lee
- Andy Bartfay